# Derivative Proof of Power Rule This proof requires a lot of work if you are not familiar with implicit differentiation,
which is basically differentiating a variable in terms of x. Some may try to prove
the power rule by repeatedly using product rule. Though it is not a “proper proof,”
it can still be good practice using mathematical induction. A common proof that
is used is using the
Binomial Theorem
: The limit definition for xn would be as follows Using the Binomial Theorem, we get Subtract the xn Factor out an h All of the terms with an h will go to 0, and then we are left with  ## Implicit Differentiation Proof of Power Rule

If we don’t want to get messy with the Binomial Theorem, we can simply use implicit differentiation, which is basically treating y as f(x) and using Chain rule.

Let Take the natural log of both sides Take the derivative with respect to x Notice that we took the derivative of lny and used chain rule as well to take the derivative of the inside function y.

Multiply both sides by y Substitute xc back in for y  Scroll to Top